Exercise affects energy metabolism and neural plasticity-related proteins in the hippocampus as revealed by proteomic analysis.
نویسندگان
چکیده
Studies were conducted to evaluate the effect of a brief voluntary exercise period on the expression pattern and post-translational modification of multiple protein classes in the rat hippocampus using proteomics. An analysis of 80 protein spots of relative high abundance on two-dimensional gels revealed that approximately 90% of the proteins identified were associated with energy metabolism and synaptic plasticity. Exercise up-regulated proteins involved in four aspects of energy metabolism, i.e. glycolysis, ATP synthesis, ATP transduction and glutamate turnover. Specifically, we found increases in fructose-bisphosphate aldolase C, phosphoglycerate kinase 1, mitochondrial ATP synthase, ubiquitous mitochondrial creatine kinase and glutamate dehydrogenase 1. Exercise also up-regulated specific synaptic-plasticity-related proteins, the cytoskeletal protein alpha-internexin and molecular chaperones (chaperonin-containing TCP-1, neuronal protein 22, heat shock 60-kDa protein 1 and heat shock protein 8). Western blot was used to confirm the direction and magnitude of change in ubiquitous mitochondrial creatine kinase, an enzyme essential for transducing mitochondrial-derived ATP to sites of high-energy demand such as the synapse. Protein phosphorylation visualized by Pro-Q Diamond fluorescent staining showed that neurofilament light polypeptide, glial fibrillary acidic protein, heat shock protein 8 and transcriptional activator protein pur-alpha were more intensely phosphorylated with exercise as compared with sedentary control levels. Our results, together with the fact that most of the proteins that we found to be up-regulated have been implicated in cognitive function, support a mechanism by which exercise uses processes of energy metabolism and synaptic plasticity to promote brain health.
منابع مشابه
Proteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning
Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine ...
متن کاملProteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning
Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine ...
متن کاملComparative Proteomic Analysis of Two Manilkara Species Leaves Under NaCl Stress
Background: Salinity is a major environmental limiting factor, which affect agricultural production. The two Manilkara seedlings (M. roxburghiana and M. zapota) with high economic importance, could not adapt well to higher soil salinity and little is known about their proteomic mechanisms. Objectives: The mechanisms responsible ...
متن کاملComparative proteomics analysis of a novel g-radiation-resistant bacterium wild-type Bacillus megaterium strain WHO DQ973298 recovering from 5 KGy g-irradiation
In order to examine radiation-induced proteins in an extremely radio-resistant bacterium, it became possibleto perform comparative proteomic analysis on radio-resistance Bacillus megaterium WHO as a wildtypestrain for the first time. Variation in cellular proteins profiles of the Bacillus megaterium WHO after 5KGy γ-irradiation were analyzed by two-dimensional poly acryl amide...
متن کاملTHE EFFECT OF AEROBIC TRAINING AND INTAKE OF L-CARNITINE ON PROTEIN LEVEL OF HIPPOCAMPUS CNTF AND CNTFR IN DIABETIC RATS
Background: Diabetes causes nerve tissue damage and ultimately death of nerve cells, especially in important areas such as the hippocampus. It seems that exercise training and anti-inflammatory supplements can moderate this condition. Therefore, the aim of this study was to determine the effect of aerobic training exercise and L-carnitine consumption on the levels of hippocampus CNTF and CNTFR ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2006